3.475 \(\int \frac{\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=182 \[ -\frac{b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac{b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d} \]

[Out]

-((b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(5/2)*(a + b
)^(5/2)*d)) + ArcTanh[Sin[c + d*x]]/(a^3*d) + (b^2*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) +
(b^2*(5*a^2 - 2*b^2)*Sin[c + d*x])/(2*a^2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.4562, antiderivative size = 182, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2802, 3055, 3001, 3770, 2659, 205} \[ -\frac{b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac{b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Cos[c + d*x])^3,x]

[Out]

-((b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(5/2)*(a + b
)^(5/2)*d)) + ArcTanh[Sin[c + d*x]]/(a^3*d) + (b^2*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) +
(b^2*(5*a^2 - 2*b^2)*Sin[c + d*x])/(2*a^2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx &=\frac{b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\int \frac{\left (2 \left (a^2-b^2\right )-2 a b \cos (c+d x)+b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )}\\ &=\frac{b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{\left (2 \left (a^2-b^2\right )^2-a b \left (4 a^2-b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2}\\ &=\frac{b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \sec (c+d x) \, dx}{a^3}-\frac{\left (b \left (6 a^4-5 a^2 b^2+2 b^4\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac{b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac{\left (b \left (6 a^4-5 a^2 b^2+2 b^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 \left (a^2-b^2\right )^2 d}\\ &=-\frac{b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac{b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 1.07702, size = 192, normalized size = 1.05 \[ \frac{\frac{a b^2 \sin (c+d x) \left (b \left (5 a^2-2 b^2\right ) \cos (c+d x)+6 a^3-3 a b^2\right )}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))^2}+\frac{2 b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{5/2}}-2 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Cos[c + d*x])^3,x]

[Out]

((2*b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) - 2
*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a*b^2*(6*a^3 - 3*a*b
^2 + b*(5*a^2 - 2*b^2)*Cos[c + d*x])*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Cos[c + d*x])^2))/(2*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.115, size = 660, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*cos(d*x+c))^3,x)

[Out]

-1/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^3*ln(tan(1/2*d*x+1/2*c)+1)+6/d/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2
*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*b^2+1/d*b^3/a/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/
2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-2/d*b^4/a^2/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2
*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+6/d/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a
+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*b^2-1/d*b^3/a/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+
b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)-2/d*b^4/a^2/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^
2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)-6/d*a*b/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+
1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+5/d*b^3/a/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*
(a-b)/((a-b)*(a+b))^(1/2))-2/d*b^5/a^3/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)
/((a-b)*(a+b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 8.59945, size = 2452, normalized size = 13.47 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*((6*a^6*b - 5*a^4*b^3 + 2*a^2*b^5 + (6*a^4*b^3 - 5*a^2*b^5 + 2*b^7)*cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^
3*b^4 + 2*a*b^6)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqr
t(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)
) - 2*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7
*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(d*x + c))*log(sin(d*x + c) + 1) + 2*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2
*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(
d*x + c))*log(-sin(d*x + c) + 1) - 2*(6*a^6*b^2 - 9*a^4*b^4 + 3*a^2*b^6 + (5*a^5*b^3 - 7*a^3*b^5 + 2*a*b^7)*co
s(d*x + c))*sin(d*x + c))/((a^9*b^2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^
3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d), -1/2*((6*a^6*b - 5*a^4*
b^3 + 2*a^2*b^5 + (6*a^4*b^3 - 5*a^2*b^5 + 2*b^7)*cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^3*b^4 + 2*a*b^6)*cos(d*x
 + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^8 - 3*a^6*b^2 + 3*a^4
*b^4 - a^2*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a
*b^7)*cos(d*x + c))*log(sin(d*x + c) + 1) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*
a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(d*x + c))*log(-sin(d*x + c) + 1)
 - (6*a^6*b^2 - 9*a^4*b^4 + 3*a^2*b^6 + (5*a^5*b^3 - 7*a^3*b^5 + 2*a*b^7)*cos(d*x + c))*sin(d*x + c))/((a^9*b^
2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x
 + c) + (a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \cos{\left (c + d x \right )}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)/(a + b*cos(c + d*x))**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.42374, size = 464, normalized size = 2.55 \begin{align*} \frac{\frac{{\left (6 \, a^{4} b - 5 \, a^{2} b^{3} + 2 \, b^{5}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt{a^{2} - b^{2}}} + \frac{6 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 5 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 6 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 5 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}^{2}} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

((6*a^4*b - 5*a^2*b^3 + 2*b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/
2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*sqrt(a^2 - b^2)) + (6*a^3*b^2*ta
n(1/2*d*x + 1/2*c)^3 - 5*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 - 3*a*b^4*tan(1/2*d*x + 1/2*c)^3 + 2*b^5*tan(1/2*d*x +
 1/2*c)^3 + 6*a^3*b^2*tan(1/2*d*x + 1/2*c) + 5*a^2*b^3*tan(1/2*d*x + 1/2*c) - 3*a*b^4*tan(1/2*d*x + 1/2*c) - 2
*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 +
 a + b)^2) + log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3)/d